LINEX K-Means: Clustering by an Asymmetric Dissimilarity Measure
نویسندگان
چکیده
منابع مشابه
Improved K-Modes for Categorical Clustering Using Weighted Dissimilarity Measure
K-Modes is an extension of K-Means clustering algorithm, developed to cluster the categorical data, where the mean is replaced by the mode. The similarity measure proposed by Huang is the simple matching or mismatching measure. Weight of attribute values contribute much in clustering; thus in this paper we propose a new weighted dissimilarity measure for K-Modes, based on the ratio of frequency...
متن کاملA dissimilarity measure for the k-Modes clustering algorithm
Clustering is one of the most important data mining techniques that partitions data according to some similarity criterion. The problems of clustering categorical data have attracted much attention from the data mining research community recently. As the extension of the k-Means algorithm, the k-Modes algorithm has been widely applied to categorical data clustering by replacing means with modes...
متن کاملClustering with Intelligent Linexk-Means
The intelligent LINEX k-means clustering is a generalization of the k-means clustering so that the number of clusters and their related centroid can be determined while the LINEX loss function is considered as the dissimilarity measure. Therefore, the selection of the centers in each cluster is not randomly. Choosing the LINEX dissimilarity measure helps the researcher to overestimate or undere...
متن کاملK+ Means : An Enhancement Over K-Means Clustering Algorithm
K-means (MacQueen, 1967) [1] is one of the simplest unsupervised learning algorithms that solve the well-known clustering problem. The procedure follows a simple and easy way to classify a given data set to a predefined, say K number of clusters. Determination of K is a difficult job and it is not known that which value of K can partition the objects as per our intuition. To overcome this probl...
متن کاملExtending k-Representative Clustering Algorithm with an Information Theoretic-based Dissimilarity Measure for Categorical Objects
This paper aims at introducing a new dissimilarity measure for categorical objects into an extension of k-representative algorithm for clustering categorical data. Basically, the proposed dissimilarity measure is based on an information theoretic definition of similarity introduced by Lin [15] that considers the amount of information of two values in the domain set. In order to demonstrate the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Theory and Applications
سال: 2018
ISSN: 1538-7887
DOI: 10.2991/jsta.2018.17.1.3